Isoprotrenol activates extracellular signal-regulated protein kinases in cardiomyocytes through calcineurin.

نویسندگان

  • Yukitaka Shizukuda
  • Peter M Buttrick
چکیده

Signal-Regulated Protein Kinases in Cardiomyocytes Through Calcineurin To the Editor: Zou et al1 reported recently that isoproterenol activates extracellular signal-regulated protein kinases (ERK) in cardiomyocytes through calcineurin. The results mediated by -adrenergic receptors ( -AR) were convincing in neonatal cardiomyocytes but might not be applicable to adult cardiomyocytes, which undergo pathological hypertrophy. Communal et al2 demonstrated that ERK is not activated by isoproterenol using adult rat ventricular myocytes kept in culture for 16 hours. Recently, we made a similar observation using adult cardiomyocytes cultured for 48 hours.3 It is clear that signal transduction mediated by -AR and Gs and Gi coupling to -AR subtypes differs between adult and neonatal cardiomyocytes. The dosages of isoproterenol used to induce hypertrophy in neonatal cardiac myocytes in the study of Zou et al induces cardiomyocyte death by apoptosis rather than hypertrophy in adult cardiomyocytes.4,5 Although Zou et al reported similar activation of ERK by -AR stimulation in whole hearts, hypertrophy induced by in vivo administration of isoproterenol to transgenic mice is much more complicated than that seen in cultured myocytes because of systemic neurohormonal changes induced by -AR and contamination by non-myocyte cells. Therefore, further investigation is needed to verify that the cross-talk discussed in cultured neonatal cardiomyocytes induced by -AR is responsible for the hypertrophy seen in adult cardiomyocytes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isoproterenol activates extracellular signal-regulated protein kinases in cardiomyocytes through calcineurin.

BACKGROUND Extracellular signal-regulated kinases (ERKs) and calcineurin have been reported to play important roles in the development of cardiac hypertrophy. We examined here the relation between calcineurin and ERKs in cardiomyocytes. METHODS AND RESULTS Isoproterenol activated ERKs in cultured cardiomyocytes of neonatal rats, and the activation was abolished by chelation of extracellular C...

متن کامل

Heart Ryanodine Receptor Type 2 Is Required for the Development of Pressure Overload-Induced Cardiac Hypertrophy

Ryanodine receptor type 2 (RyR-2) mediates Ca release from sarcoplasmic reticulum and contributes to myocardial contractile function. However, the role of RyR-2 in the development of cardiac hypertrophy is not completely understood. Here, mice with or without reduction of RyR-2 gene (RyR-2 / and wild-type, respectively) were analyzed. At baseline, there was no difference in morphology of cardio...

متن کامل

Ryanodine receptor type 2 is required for the development of pressure overload-induced cardiac hypertrophy.

Ryanodine receptor type 2 (RyR-2) mediates Ca(2+) release from sarcoplasmic reticulum and contributes to myocardial contractile function. However, the role of RyR-2 in the development of cardiac hypertrophy is not completely understood. Here, mice with or without reduction of RyR-2 gene (RyR-2(+/-) and wild-type, respectively) were analyzed. At baseline, there was no difference in morphology of...

متن کامل

Different Expression of Extracellular Signal-Regulated Kinases (ERK) 1/2 and Phospho-Erk Proteins in MBA-MB-231 and MCF-7 Cells after Chemotherapy with Doxorubicin or Docetaxel

Objective(s) Curative treatment of breast cancer patients using chemotherapy often fails as a result of intrinsic or acquired resistance of the tumor to the drug. ERK is one of the main components of the Ras/Raf/MEK/ERK cascade, which mediates signal from cell surface receptors to transcription factors to regulate different gene expression. In this study, cytotoxicity and the expression of Erk...

متن کامل

Buckwheat Rutin Inhibits AngII-induced Cardiomyocyte Hypertrophy via Blockade of CaN-dependent Signal Pathway

Buckwheat rutin has been found to be able to inhibit angiotensin II (AngII) - induced hypertrophy in cultured neonatal rat cardiomyocytes, but the mechanism remains uncertain. In this study, myocardial hypertrophy model was made by adding AngII to the medium of cardiac myocytes of neonatal rats, meanwhile, different concentrations of buckwheat rutin were applied to observe their effects. Intrac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation

دوره 105 2  شماره 

صفحات  -

تاریخ انتشار 2002